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An improved multi-objective optimizer based on the nondominated sorting genetic algorithm II (NSGA-II) is presented for large 

planar array thinning in this work. The iterative fast Fourier transform (IFFT) technique with a judge factor is introduced into the 

optimizer to accelerate the convergence. In the early phase of the optimization algorithm, the global characteristics of GA occupy a 

major position and the powerful local characteristics of IFFT in the late phase. Thus, this proposed algorithm can not only effectively 

avoid being trapped into the local optimum, but also possess a fast convergence for large array thinning. A representative example 

shows the good performance of the proposed algorithm. 

 
Index Terms—Array thinning, nondominated sorting genetic algorithm II (NSGA-II), iterative fast Fourier transform (IFFT). 

 

I. INTRODUCTION 

ince the first studies were carried out in the 1960s [1], [2], 

thinned arrays have been an object of intense research due 

to several advantages associated to their lower cost, weight, 

power and complexity than fully filling arrays. Moreover, the 

improvement of the sidelobe level (SLL) of the thinned arrays, 

especially for large ones, is attracting much attention.  

Initially, the statistical method was used to select the ele-

ment locations to provide the desired density taper [1]. In re-

cent years, the optimization methods, such as genetic algo-

rithms (GAs) [3] and particle swarm optimizer (PSO) [4], 

have been used for thinned array design. However, these 

methods fall far short of optimum configurations for large 

arrays due to the very intensive computational burden. An 

iterative fast Fourier transform (IFFT) technique is proposed 

to arrive at thinned arrays [5]. IFFT can realize array thinning 

very fast, and what is more, it can get thinned element distri-

butions for both linear as well as planar arrays with more than 

1000 elements. However, this technique is easy to be trapped 

into the local optimum. Therefore, a sufficient number of trials 

are applied so that it can find the thinned element distribution 

which represents the global optimum solution. 

In this work, an improved multi-objective optimization al-

gorithm based on nondominated sorting genetic algorithm II 

(NSGA-II) [6], [7] is introduced to meet the large planar array 

thinning requirements of a given filling factor and the lowest 

possible SLL. Combined with IFFT which performs only once 

instead of multiple times in each generation of GA, this im-

proved algorithm takes on a global search ability on one hand 

and good local convergence on the other. In addition, a judge 

factor applied to decide whether IFFT is executed, guarantees 

the global characteristics of the algorithm in the early phase 

and the powerful local characteristics in the late phase. A nu-

merical example of large planar array thinning is provided and 

the obtained array pattern shows a low SLL with a given array 

filling factor.  

II. BASIC THEORY OF THINNED ARRAY 

According to the classical principle of pattern multiplication, 

the far-field F in the direction (θ, φ) can be written as 

( ) ( ) ( )F u,v = EF u,v AF u,v                         (1) 

where EF is the embedded element pattern, AF is the array 

factor, and u and v are defined as u = sinθcosφ and v = 

cosθcosφ, respectively. If a planar array consists of N rows and 

M columns of elements with an element spacing dx in the x-

direction and dy in the y-direction, AF(u, v) can be 

characterized as 
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where Amn is the complex excitation. The array factor is 

related to the element excitations through an inverse Fourier 

transform, which means that the element excitations can be 

derived from the array factor through a direct Fourier 

transform, and then the far-field F can be obtained. 

In terms of thinned arrays, Amn of the removed elements 

(turned off) is zero, and the number of radiating elements 

depends on the array filling factor f, which is defined as the 

ratio of fraction of the radiating elements in relation to the 

total number of the corresponding full array. 

III. IMPROVED MULTI-OBJECTIVE GENETIC ALGORITHM 

In the array thinning process, the element number and the 

peak sidelobe (PSL) are the two optimization objectives. The 

objective functions can be written as 
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where NE is the element number of current individuals and 

NFull is the total element number of the corresponding full 

array, f is the filling factor of the expected thinned array. 

The flowchart of the proposed algorithm is shown in Fig. 1. 

In NSGA-II, a random initial population with NE individuals is 

generated and the fitness values of individuals are calculated. 
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Then nondominated sorting and crowding-distance calculation 

are given. A new mixed population is constituted by three 

parts, namely, the offspring population obtained from GA 

operators, the offspring one achieved with IFFT and the parent 

one. At last, a trimming operation is applied to the mixed 

population after the fitness values are evaluated. 
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Fig.1. Flowchart of the improved multi-objective genetic algorithm. 

 

Different from the IFFT technique in [5], here the iteration 

operation runs only once for the inhibition of prematurity in 

each generation of GA. What is more, the IFFT technique 

applied to the current generation depends on whether a 

random number (Rand) drawn from [-1, 1] is larger than an 

introduced judge factor FJudge. The FJudge is defined as 
1

Judge Judge

t tF F                                    (4) 

where α is a constant similar to the cooling factor of a cooling 

schedule in the simulated annealing [8], and t and t+1 denote 

the tth and (t+1)th generations, respectively. For simplicity, 
0

JudgeF  can be selected as 1 and α be 0.9 in this work. In 

addition, a lower limit of FJudge is given in order to guarantee 

that the algorithm possesses the quantitative global 

characteristics in the late phase. 

When the improved algorithm is applied to the array 

thinning, a set of nondominated solutions, viz., the element 

number and the PSL constitute the pareto front. Only the 

solution in which the Objv1 equals to zero and the Objv2 is the 

minimum one is chosen as the best solution in current 

generation. After a few generations, the global best solution 

for the thinned array with a given filling factor can be found. 

IV. NUMERICAL EXAMPLE 

The presented thinning algorithm is tested on a circular 

planar array with a diameter of 100 wavelengths and a filling 

factor of 30%. The considered array features an embedded 

isotropic element pattern and the element spacing is selected 

as half wavelength. The algorithm uses 50 agents for 200 

iterations, and the lower limit of FJudge is chosen as 0.4. 

Fig. 2 shows the element distribution and the u-cut of the 

far-field of the thinned array. It can be observed that the PSL is 

-35.9 dB which is 0.4 dB lower than the result in [5]. The best 

thinned element distribution is found after only 35 generations. 

20 trials are applied to the thinning algorithm and almost all 

obtained PSLs are the same. In addition, the traditional 

optimization methods are not able to thin an array with such a 

large size. 
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Fig. 2. Best element distribution and u-cut of the far-filed of the thinned array. 

V.  CONCLUSION 

This work introduces an improved multi-objective genetic 

algorithm in large planar array thinning. Combined with the 

IFFT technique, the GA optimizer possesses a powerful global 

optimization capability and a fast convergence speed. A 

numerical example shows that the proposed algorithm can 

achieve the low sidelobe results in large array thinning. 
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